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1.  ABSTRACT  
 The ability to prepare and present a mathematical argument, or proof, is a key component 
of the mathematical competence students need to achieve in elementary school. A proof for 
elementary students is not the highly structured deductive mathematical argument seen in high 
school algebra classes. Elementary students can, however, create mathematical arguments about 
equivalence using vocabulary appropriate for their level of understanding.  The goal of the 
Technology to Support Mathematical Argumentation project is to develop computational tools 
with which elementary students can construct and share mathematical arguments. This paper 
reports on the development of array manipulation and animation creation tools that are 
extensions to our tablet-based Classroom Learning Partner (CLP) software.  It also describes our 
experience in a Boston third grade classroom in which students were able to successfully create 
animations to demonstrate mathematical arguments about equivalence.  
 
2.  PROBLEM STATEMENT AND CONTEXT  
 The ability to prepare and present a mathematical argument, or proof, is a key component 
of the mathematical competence students need to achieve in elementary school.  Developing this 
skill serves three distinct purposes for elementary math students: It supports and scaffolds their 
learning of computation, it prepares them for upcoming courses in algebra by introducing them 
to algebraic reasoning, and it begins the process of teaching them how to formulate and justify 
claims. Learning how to construct persuasive mathematical arguments can be challenging, 
however, and many students struggle with the subject matter. We believe that appropriate 
computational tools can help students develop their ability to fashion convincing proofs.  In the 
NSF-funded Technology to Support Mathematical Argumentation project we are collaborating 
with leading mathematics educators who study early algebraic reasoning in order to design and 
implement computational tools with which students can construct and share mathematical proofs.  
These tools are being developed and tested within an existing tablet-based software system 
called Classroom Learning Partner (CLP), which supports the creation and sharing of student 
work as a basis for class discussion [1, 2, 3].  With CLP, students use the tablet computerÕs pen 
to interact with computational tools and to create inscriptionsÑ handwritten sketches, notes, 
etc.Ñ in an electronic notebook. Students share their work by means of the tablet computersÕ 
wireless networking. The teacher views and projects student work, using it to guide classroom 
discussion about alternate representations and problem-solving strategies. 
 Key to our development and research is the work of Russell, Schifter, and Bastable [4] and 
Schifter [5], which explored the idea of representation-based proofs, i.e., proofs about the 
behavior of arithmetic operations that employ representations of quantities rather than algebraic 
symbols.  Many of the representation-based proofs described by these authors involve an initial 
representation of a quantity or quantities, a manipulation of that representation, and a final state.  
The ÒproofÓ is contained in the observation that, even though the structure of the representation 
has changed, the quantity represented in the initial and final state has remained the same.  That 
is, there is a story to the proof.  As one of the students in SchifterÕs work says, ÒItÕs like you 
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replay it in your mind, and now it makes sense.Ó  [5, p. 79]  One of the affordances of the pen-
based tablet technology we are exploiting is the ability to record, save, and replay a series of 
actions on a representation, thus creating a dynamic representation. 

We are designing the new computational tools by engaging mathematics educators who 
have studied how students develop mathematical argumentation skills, but who have little 
experience using technology to support mathematical thinking. To date, we have designed and 
implemented  tools that allow students to create and communicate mathematical arguments about 
numbers and operations.  We have identified the following design goals for these tools: (1) offer 
enough flexibility for students to create novel representations, (2) support creation of not only 
static representations but also dynamic representations that illustrate process as part of the 
argument, and (3) facilitate recording explanations, either oral or written, to accompany the 
representations.  Below we describe the tools we have developed, our experience with them in a 
third grade classroom, reflections on our design criteria, and plans for next steps. 
 
3.  METHOD EMPLOYED   
3.1  Classroom Setup  
 In a CLP classroom, students and teacher each have a tablet computer, and a tablet is 
connected to a projector.  At the start of a lesson, students log in and are automatically connected 
to a wireless peer-to-peer network. They load the lessonÕs electronic notebook, which the teacher 
has created using an authoring system.  Students work through the lessonÑ individually, in 
groups, or as a classÑ and wirelessly submit their responses, which appear on the teacherÕs 
machine. The teacher views student work while circulating through the classroom, identifying 
students who need help. She also conducts class discussion focused on student work examples 
that she has selected and sent wirelessly to the projector to be displayed anonymously.  The 
teacherÕs UI is shown in Figure 1.  The studentÕs UI is shown in Figure 2. In both versions of the 
UI, users select commands by tapping on icons on the top command bar with pen or finger.  
Thumbnails of notebook pages are shown in the panel on the left, which the user can hide from 
view. In addition, the teacher can view student work for a particular page by tapping on the 
person tab associated with a page. By tapping on icons below each page of student work, the 
teacher can tag work so that it can be sorted by those tags.  In addition, the teacher can create and 
project displays showing multiple examples of student work at the same time. The student 
version has a Send to Teacher button for submitting notebook pages to the teacher. 

 
Figure 1. Teacher UI: thumbnails of pages are on the left, student submissions for a page are to the right 
and accessed via the person tab for the page, student work is displayed in the main window 
 



3.2 Software Development 
 To support teaching and learning of mathematical proofs, we added two new features to 
CLP:  a new math tool and an animation tool. 
 
New Math Tool. The new Cut tool enables students to split CLPÕs mathematical representations, 
e.g., an array, into two objects.  Such a cutting tool is necessary for the kinds of mathematical 
proofs that are prevalent at the elementary grade level, e.g., showing mathematical equivalencies 
such as 4 x 6 = 8 x 3. For such a proof, a student could create a 4x6 array, cut it into two 4x3 
arrays, then move one of the 4x3 arrays below the other one to show an 8x3 array. Shown in 
Figures 2a and 2b are the beginning steps in such a proof.  To use the Cut tool, a student taps on 
the  icon in the top command bar and uses the tablet pen to draw a continuous stroke across 
the object where he or she wanted to split it, as shown below. While the line is being drawn, the 
cursor is a scissors icon. 

 
Figure 2a. To cut an array, student taps on the Cut      2b. Result of cutting an array is two new arrays, 
                 tool then draws a line at a cut location                  each of which can be moved independently 
 
Animation Tool. To enable elementary students to create a dynamic representation that illustrates 
a mathematical proof, we designed and implemented a simple animation tool. With such a tool, 
students have an artifact of their work that can be easily replayed and shared with other students 
and the teacher.  Having an animation also avoids a problem with paper-based animation proofs: 
Having separate representations of the initial and final state of a proof represents the quantity in 
question twice, rather than having a single representation that is modified. 

In order to avoid having animation controls on the command bar, where they would be 
available on every page and might prove distracting to students, we created a new kind of CLP 
notebook page with animation controls at the bottom of that page, out of studentsÕ way.  The new 
Animation Page with controls is shown in Figure 3. 



 
Figure 3. CLP page for creating and playing animations using controls at the bottom of the page 
 
 In designing the animation controls, we wanted to have a UI that was intuitive and easy for 
students to use, so we patterned our UI after that of a general media player, which students are 
likely to have seen before. As shown in Figure 3, it has a Record button that is used to indicate 
when actions would begin to be recorded to create an animation. It also has Rewind, Play, and 
Stop buttons for the animation.   To create an animation, a user taps the Record button, 
manipulates objects on the notebook page, then taps Stop. Tapping Rewind then Play replays the 
animation. Stopping an animation at any point during playback then tapping Record records over 
any animation that follows the stopping point. 

We included indicators to give the user feedback about the presence and state of an 
animation:  An Animation Present indicatorÑ a small box on the bottom left of the animation 
pageÑ is white when no animation is present on the page and blue when an animation is present.  
An Animation Progress bar is a yellow bar that spans the bottom of the page, indicating the 
userÕs location in the animation, i.e., how much of an animation has been played back.  An initial 
design proved to have buttons that were too small for students to easily tap, so the buttons were 
enlarged to the size shown in Figure 3.  The buttons also are brightly colored in order to be easily 
distinguished from one another and to help make the UI appealing to elementary students.  We 
included a Clear button after observing in an initial design that students often wanted to try out 
several versions of an animation before finalizing one. The Clear button is spaced away from the 
other control buttons in order to decrease the chance of accidental tapping. Finally, after 
observing that students often wrote their explanations while recording, we made contiguous text 
appear on the screen at once during playback. Without this feature, when a teacher replays a 
studentÕs animation for the class to see, significant time may be spent watching a studentÕs ink 
appear and disappear if the student erased it. 
 
3.3 Classroom Trials 

Our classroom observation of students using the new CLP features took place in two 
Boston-area classroomsÑ four days in a classroom with 25 third grade students and two days in a 
classroom with five fourth and fifth grade special needs students. Described here is our 
experience in the classroom of 25 students. 



 The classroom was at the Mattahunt School in Boston, MA, an inner-city school with 
students of predominantly African-American, Latino, and Caribbean backgrounds.  We spent 
four days in this classroom with class durations between 60 and 90 minutes.  The class had 
participated in the NSF-funded project Using Routines as an Instructional Tool for Developing 
Students’ Conceptions of Proof, led by Russell, Schifter and Bastable, so the students were 
familiar with the process of using representations to prove generalizations about arithmetic 
operations.  On the first day, students spent 15 minutes getting used to navigating through pages 
in a CLP notebook, inking, submitting work to the teacher, and creating arrays.  They spent the 
remainder of the class using CLP to create and discuss representations that employed arrays to 
visualize multiplicative relationships, e.g., showing all the ways to use arrays to represent the 
number 32. On the second day, students used array creation, cutting, and animation tools to 
divide large arrays into smaller ones and to discuss the mathematical relationships between the 
large and small arrays. On the third and fourth days, the students worked on proofs that required 
them to coordinate use of all the tools they had employed on the previous days.  The student 
work discussed below is from the fourth day. 
 
Problem 1:  How can you prove that 3 x 4 = 6 x 2? 
 

In order to solve this problem, students had to create either a 3x4 array or a 6x2 array, cut it 
in half and re-arrange the halves to create the other array, recording the transition from one shape 
to the other in an animation.  The proof of the equality of the two expressions is inherent in the 
fact that, while the shape of the array has changed, the representation still contains the same 
number of units. Several student responses are shown below.  ALÕs response, shown in Figures 
4a and 4b, is typical.  She began with a 3x4 array, cut it into two 3x2 arrays and moved one of 
the smaller arrays under the other small array to create a 6x2.  Her explanation reads, ÒI started 
with a 3 x 4 array, then I made it into a 6 x 2 array.  I cut the 3 x 4 array into a 3 x 2  + a 3 x 2 
array, then move one 3 x 2 array under the other one.Ó 
 

   
Figure 4a. ALÕs proof for Problem 1:  Beginning      4b.  Ending   
 

Some students wanted to show the array transformation in both directions, i.e., from 3x4 to 
6x2 and from 6x2 to 3x4.  One example is DOÕs work shown in Figures 5a and 5b. Before 
starting her recording, she created a 3x4 array, a 2x6 array and two 3x2 arrays.  Her final screen 
shows just two arrangements: a 6x2 made up of two 3x2 arrays and a 3x4 made up of two 3x2 
arrays.  Her written explanationÑ ÒI did a 3 x 4 then I move the cube under the other cube now 



itÕs a 3 x 4.  Now I made a 6 x 2.  I cut it in the middle and put to a long stick.ÓÑ is a little hard 
to follow, partly because of her use of some vocabulary that had been developed in her 
classroom, e.g. ÒstickÓ to mean arrays that are much longer than wide. Her oral explanation in 
class, however, was quite clear.    

 

  
Figure 5a. DOÕs proof for Problem 1: Beginning       5b.  Ending  

 
While few students actually wrote down a statement that Òthe quantity had not changed, just 

the arrangement of the arrays,Ó the teacher led the class discussion in that direction and at least 
one student included the following in his work, ÒThe arrays are different sizes but have equal 
numbers.Ó  (By Òsize,Ó he means Òshape.Ó) 

All but three students were successful in creating animations to prove this equivalence. 
(One student with behavioral problems did not want to participate; a second student could create 
animations but did not understand the math; a third student showed that 3 x 4 = 12 x 1, rather 
than 6 x 2.) Several students went on to make up their own similar problems, creating animations 
showing, for example, that 5 x 2 = 10 x 1, or 6 x 6 = 12 x 3. 
 
Problem 2:  What happens when you subtract 1 from one of the factors in a multiplication 
problem?  Create an animation to show what happens. 

While this problem was stated as a general question, we decided in consultation with the 
teacher to pose it about a particular multiplication problem, namely 6 x 4. We planned to move 
to the more general problem statement if we had time, but we did not.   

The key insight we hoped students would have in working on this problem is that 
subtracting 1 from one of the factors can be modeled by subtracting a row or a column from the 
array representing the original multiplication problem.  Some students initially thought that they 
could model Òsubtracting 1 from a factorÓ by subtracting 1 from the product.  In fact, for better 
or for worse, our software made this impossible, since using the Cut tool on an array 
automatically cut off some number of rows or columns.  However, we observed at least one 
student (JA) tryingÑ unsuccessfullyÑ to cut off a single unit from an array.  Her eventual 
solution to the problem is presented in Figures 6a and 6b, which show the beginning and end of 
the animation she created.  She cut off one column from the 6x4 array and moved it to the side.  
Her written explanation offers a window into her struggles: ÒI notice that if you take away 1 your 
answer would be 1 more less and if you take away 4 your answer would be 4 more less.Ó 



 
Figure 6a. JAÕs proof for Problem 2: Beginning          6b. Ending  

 
While many of the students created animations similar to JAÕs, cutting off and moving 

either a row or a column, several students saw an additional level of complexity in the problem 
and realized that they could subtract one from either factor, ending up with two different array 
manipulations.  ME, for example, created two 6x4 arrays, cut a row off one and a column off the 
other and wrote, ÒI started with 6x4.  I cut one of sides of 6x4 and made it in to a 5x4.  When I 
cut the other one I took the top one and it made 6x3.Ó  Starting and ending states of his animation 
are shown in Figures 7a and 7b. 

 

   
Figure 7a.  MEÕs proof for Problem 2: Beginning        7b. Ending  

 
Another student added a dramatic flair to his solution by cutting off a row, moving it away 

from the original array, then deleting it.  During the class, he was adamant that we display his 
work on the projector, so in the last few minutes of class we didÑ and the disappearance of the 
cut-off row was greeted with appreciative laughter from the other students and the teacher. 

All but four students were able to create animations for this proof.  (One again did not want 
to participate; one forgot to tap Record, but was nonetheless successful in cutting and moving 
arrays to demonstrate the proof; two did not understand the math, though they could create 
animations.) 
 
 



4.  RESULTS AND EVALUATION 
Our reflections are organized around our three design goals: novel representations, dynamic 
representations, and explanations. 
• Were students able to create novel representations?   
Students were able to use the tools quite facilely (and enthusiastically), but their solutions had 
only minimal variability, due to the narrow range of tools that we provided them.  There was 
more variability in their solutions to the second problemÑ subtracting 1 from a factorÑ but even 
there, most solutions were similar.  Our next steps in providing students with more expressive 
options will be to integrate more tools with the animation capability and to develop a fuller range 
of tools to construct and manipulate arrays. 

Adding array construction tools to the set of tools students have available may make it 
possible for students to express more ÒwrongÓ ideas, e.g., cutting off a single unit from an array, 
rather than cutting off a row or column, as JA wanted to do.  There is an interesting educational 
dilemma encapsulated in this design question:  Some digital tools lead students to ÒcorrectÓ ideas 
but may short circuit the re-conception process that may ultimately lead to deeper understanding.  
In this case, if JA had been able to just take off one unit from her array to show her 
understanding of Òsubtracting 1 from a factorÓ, which she would have been able to do with 
physical cubes, the classroom conversation would have been different.  Would this have been 
ÒbetterÓ for her learning?  Or for the class as a whole?  Having more flexible tools will allow us 
to examine this question in more depth. 

• Were students able to create dynamic representations?   
The animation tools worked well, and students learned to use them quickly.  While we do not yet 
have direct comparisons, our impression is that these tools enabled students to express 
mathematical equivalences more easily than they could with pencil and paper, physical 
manipulatives, or static drawing tools.  As the teacher said, ÒOn paper they draw the beginning 
and the end.  ItÕs so much easier to see the proof when the kids can create the animation.Ó  

Our classroom observations led to several improvements in our UI design, which are 
described in the next section.  In particular, we noticed that the teacher and students would 
sometimes want to forward/rewind an animation to a specific spot, and sometimes the students 
lost track of what they were doing with an animation (rewinding, editing, replaying, etc.). In 
addition, the teacher sometimes wanted to vary the speed at which an animation played back. For 
more complex animations, the teacher would want to play them back slowly so that students 
could see exactly what was taking place, but for simpler animations, she wanted to play them 
back more quickly.  

• Did the tools facilitate both written and oral explanations?   
We had originally hypothesized that adding the ability for students to record an audio 
explanation to accompany an animation would enhance their ability to explain their thinking, but 
we did not implement such a feature for two reasons.  First, we realized in the design phase that 
it would be difficult for students to synchronize their verbal explanations with the animation.  In 
general, the animations for the number proofs in our curriculum are brief and last a far shorter 
time than it takes for a student to describe what is happening in the animation.  As described 
above, the issue of playback speed was a complicating factor, and we decided that integrating 
audio at this point would be more of a burden than a help to the users.  Second, we had 
discovered in previous experiments with audio explanations that it was quite difficult for an 
entire class to hear an explanation played on a studentÕs or teacherÕs machine.  In our trials with 



the animation tool, the studentsÕ written explanations were sufficient to support oral class-wide 
discussions about their proofs.   

There are students, however, who find writing daunting, and they may benefit from an 
audio recording capability. Such audio recordings may be especially helpful when a teacher will 
be reviewing work outside of class when students are not available to describe or answer 
questions about their animations. 

 
5.  CURRENT AND FUTURE WORK 
 The current version of the animation software has three new features, the first two of which 
are shown in Figure 8. 

Location Slider. We added a location slider, overlaid on the animation progress bar,  that allows 
a user to play an animation by moving the slider back and forth, until she gets to a specific 
location. The slider allows a user to forward an animation past uninteresting or repetitious 
sections.   

Variable Playback Speed. Initially we attempted to decide on an optimal average speed for 
animation playback, but it is better to create a user control, implemented as a slider, that allows 
the teacher and students to change in real time the speed at which an animation is playing.  The 
slider is located between the Clear button and the animation control buttons.  

Recording Cue. We made the border of the animation area flash red when users are recording an 
animation, providing an extra cue to help users remember to press the Record button. 

 
Figure 8. New features:  Location slider (on yellow progress bar) and variable playback speed (below 
progress bar) 

 In addition to modifying the animation tool, our current and future work involves making 
our array tools more flexible, as discussed in the previous section, e.g., to enable students to 
express more ÒwrongÓ ideas such as removing a single unit from an array rather than a row or 
column. It also involves providing students with tools to prove generalizations about arithmetic 
operations rather than specific instantiations of generalizations. While Problem 2, for example, 
was phrased in full generalityÑ ÒWhat happens when you subtract 1 from one factor in a 
multiplication problem?ÓÑ students actually worked on the problem in the context of 6 x 4.  



While they were successful in their use of the technology and cogent in their arguments about the 
specific problem, there was no obvious way for them to use the technology to make the general 
argument because they could only create specific arrays using our tools to specify the numbers of 
rows and columns.  In order to articulate general proofs, elementary students need a 
representation that achieves what ÒxÓ and ÒyÓ do in formal algebraic proofsÑ in this case, a 
representation that enables students to indicate that the actual numbers of rows and columns do 
not matter. Using such a representation, students then could state proofs about the structure of 
numbers and the effect of manipulations on that structure.  One such representation can be 
modeled after what students do when using physical manipulatives such as Unifix cubes to state 
a proof about numbers:  The Boston teacher reported that when her students talk about proofs, 
they sometimes use their hands to cover part of their representation in order to indicate that it 
doesnÕt matter how many cubes are in the ÒcoveredÓ part of the number.  We are designing for 
CLP a similar software ÒhandÓ that will allow students to cover parts of an array to distinguish 
between the critical parts of the structure of a number, i.e., those parts that are important to the 
proof, and those indeterminate parts that are Òvariable.Ó   We plan to observe the use of this new 
feature in our next classroom trials. 
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