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1. ABSTRACT

The ability to prepare and present a mathematical argument, or proof, is a key component
of the mathematical competence students need to achieve in elementary Achomif for
elementary students is not the higblyuctureddeductivemathematical argument seen in high
school algebra classdsSlementary students can, however, creasghematical argumentbout
equivalenceusing vocabularyappropriatefor their level of understanding.The goal of the
Technology to Support Mathematical Argumentation projectis to developcomputational toa
with which elementarystudents can construct and share mathemadicpiments This paper
reports on the development of array manipulation and animation creation thatdlsare
extensions tmur tabletbasedClassroom Learning Partner (CLP) softwareal$bdescribes our
experience ira Bostonthird grade classroom in which studentsrevable to successfully create
animations to demonstrate mathematargluments about equivalenc

2. PROBLEM STATEMENT AND CONTEXT

The ability to prepare and present a mathematical argument, or proof, is a key component
of the mathematical competence students need to achieve in elementary school. Developing this
skill serves three distinct pawses for elementary math students: It supports and scaffolds their
learning of computation, it prepares them for upcoming courses in algebra by introducing them
to algebraic reasoning, and it begins the process of teaching them how to formulate and justif
claims. Learning how to construct persuasive mathematical arguments can be challenging,
however, and many students struggle with the subject matter. We believe that appropriate
computational tools can help students develop their ability to fashion comyiproofs. In the
NSFKfunded Technology to Support Mathematical Argumentation projectwe arecollaboraing
with leading mathematics educatavho studyearly algebraic reasoning order to design and
implementcomputational to@with which studentsan construct and share mathematical proofs
These tools are being developed and tested within an existodgtbasedsoftware system
called Classroom Learning Partné€LP), which supports thecreation andsharing of student
work as a basis for classsdussion[1, 2, 3] With CLP, students use the tablet computerOs pen
to interact with computational tools and tweate inscriptiori$ handwritten sketches, notes,
etcN in an electronic notebook. Students share their work by means of the tablet computersO
wireless networking. The teacheiews and projects student work, using itgude classroom
discussion about alternate representations and predndnmg strategies.

Key to our development and research is the work of Russell, SchiftttBastabl¢4] and
Schifter [5] which explored the idea of representatioased proofsj.e., proofs about the
behavior of arithmetic operations that employ representations of quantities rather than algebraic
symbols. Many of the representatibased proofs describdxy these authors involve an initial
representation of a quantity or quantities, a manipulation of that representatienfimaldstate
The OproofQ is contained in the observation that, even though the structure of the representation
has changed, the gutity represented in the initial and final state has remained the SEmaé.
is, there is a story to the proof\s one of the students in SchifterOs work says, OltOs like you



replay it in your mind, and now it makes sensfsQp. 79] One of the affatances of thepen
based tabletechnology we are exploiting is the ability to record, save, and replay a series of
actions on a representation, thus creatidgnamic representation.

We are dagning the newcompuational tools by engaginmathematicsedwcators who
have studiedhow students develop riematical argumentation skillgut who have little
experience using technology to support mathematical thinKioglate,we have desiged and
implemenéd tools that allow students to create and communicate mathematical arguments about
numbers and operation®Ve haveidentified the following design goals for these tools:ftgr
enough flexibilityfor students tareatenovel representations, (2) supportcreation ofnot only
static representations but als@namic representations that illustrate process as part of the
argument,and (3) facilitate recordingexplanations, either oral or written, to accompany the
representations. Below we describe the ta@dave developed, our experienggh them ina
third grade classroomeflections on oudesign criteriaand plans fonext steps

3. METHOD EMPLOYED
3.1 Classroom Setup

In a CLP classroomstudents and teacher each have a tablet computer, d@alled is
connected to a projector. At the start of a lesson, students log in and are automatically connected
to a wireless peeo-peer network. They load the lessonOs electronic notebook, which the teacher
has created using an authoring syste@tudens work through the lessBhindividually, in
groups, or as a clddsand wirelessly submit their responses, which appear on the teacherOs
machine.The teacher views student work whdgculating through the classrogndentifying
students who need help. Shkso conducts class discussion focused on student work examples
that she has selected and sent wirelessly to the projector to be displayed anonymbasly. T
teaclkerOs)1 is shown in Figure 1 The studentOs Ul is shown in FigurenZdoth versionsf the
Ul, users selectommand by tapping on icons on the top command baith pen or finger
Thumbnails of notebook pages are shown in the panel on the left, which the user can hide from
view. In addition, the teacher can view student work for a particulge py tapping on the
person tab associated with a pa@y tapping on icons below each page of student work, the
teacher can tag work so that it can be sdniethose tagsin addition, theeacher can create and
project displays showing multiple examplef student workat the same timeThe student
version has &end to Teacher button for submitting notebook pages to the teacher.
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Figure 1 Teacher Ul: thumbnéils of pagare ontheleft, student submissiorier a pageare totheright
and accesed viaghe person tab for theage, student woris displayed in the main window



3.2 Software Development
To support teaching and learning of mathematical prawésadded twanew featureso
CLP: a new math tool arahanimationtool.

New Math Tool. The new Cur tool enables students to split CLRAxthematical representations

e.g., an arrayinto two objects. Such a cutting tool is necessary for the kinds of mathematical
proofs that are prevalent at the elementary grade level, e.g., showing mathematical equivalencies
such a#4 x 6 = 8 x 3.For such a proof, a student could create a 4x6 actdyif into two 4x3

arrays, then move one of the 4x3 arrays below the other one to show an 8x3 array. Shown in
Figures2a and2b are the beginning steps in such a proof. To us€ithtool, a studentaps on

the X icon in the top command bar and sifige tablet pen to draw a continuous stroke across
the object wherée or shavanted to split it, as shown below. While the line is being drawn, the
cursor is a scissors icon.
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Figure 2aTo cut an array, student tapsthie Cur  2b. Result of cuttingraarray is two new arrays,
tool then drawsa line ata cut location each of which can be moved independently

AnimationTool. To enable elementary studentscteate a dynamic representattbat illustrates

a mathematical proofyve designed and implemented a simple animation Wih such atool,
studentdhave an artifact of their work @h can be easily replaye@shd shared witlotherstudents

and the teacherHaving an animation also avoids a problem wiipgrbased animation proofs:
Having separate representations of the initial and final state of a proof represents the quantity in
guestion twice, rather than having a single representation that is modified.

In order to avoid having animation controls the command barwhere they would be
available on every page and might prove distracting to studeatsreateda new kind of CLP
notebookpagewith animationcontrols at the bottom of that pageit of studentsO wayhe new
Animation Pagevith controlsis shown in Figure 3.
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Figure 3. CLPpage for creating and playing animatiarsing controls at the bottom of the page

In designing the animation controls, wantedto have a Ul that was intuitivend easyor
students to useso wepatterred our Ul after that of a general media playehich studentsre
likely to have seen befords shown in Figure 3t ihasa Record button that$ used to indicate
when actions would begin to be recorded to create an animé#tialso haRewind, Play, and
Stop buttons for the animation To create an animation, a user taps Heeord button,
manipulates objects on the notebook page, thenStapsTappingRewind thenPlay replays the
animation. Stopping an animation at any pdinting playbackhen tappmg Record records over
any animation that follows the stopping point.

We included indicators to give the user feedback about the poesemd state of an
animation: An Animation Present indicatoN a small box on the bottom left of the animation
pageN is white when no animatiorsipresent on the pagnd blue when an animatios present.
An Animation Progress baris a yellow bar thaspans the bottorof the page, indicatinghe
userOs location in the animation, hew much of an animation has be#ayedback An initial
design proved to have buttons that were too small for students to easily tap, so the buttons were
enlarged to the size shownkigure 3. The buttons alscedorightly colored in order to be easily
distinguished from one anothandto help make the Ul appealing to elementary studevits
included aClear button after observing in an initial design that students often wanted to try out
several versions of an animatibafore finalizing one. Th€lear button is spaced away from the
other control buttonsn order to decrease the chance of accidental tappkagally, after
observing that studentdtenwrote their explanations while recordingge made contiguous text
appear on the screen at once duntayback. Without thideature, when a teacher replays
studentOs animation for the slas see, significant time mée spent watching a studentOs ink
appear and disappeéthe student erased it.

3.3 Classroom Trials

Our classroom obseation of stuénts using the newCLP featurestook place in two
Bostonarea classroomsfour days in a classroom with #8ird grade stdentsand two days in a
classroom with five fourth and fifth gradepecial needs studentBescribed here is our
experiace in the clagoom of 25students.



The classroom was dhe Mattahunt School in Boston, MA, an inrgity school with
students of predominantly Africelimerican, Lating and Caribbean backgrounds. We spent
four days in this classroo with class durations between 60da90 minutes. The clasbad
participated inthe NSFfundedproject Using Routines as an Instructional Tool for Developing
Students’ Conceptions of Proof, led by Russell, Schifter and Bastab$®, the students were
familiar with the process of using representations to prove generalizations about arithmetic
operations.On the first day, students spent 15 minutes getting used to navitfatogh pages
in a CLP notebook, inking, submitting work to the teacher, aedtiog arrays. They spent the
remainder of the class using CLP to create and discuss representations that employed arrays to
visualize multiplicative relationships, e.g., showing all the ways to use arrays to represent the
number 32. Orthe second day, wients used array creation, cutting, and animation tools to
divide large arrays into smaller ones and to discuss the mathematical reladetivpen the
large and small arrays. On the third and fourth days, the students worked on proofs that required
them to coordinate usef all the tools they hag@mployed on the previoutays. The student
work discussed below is from the fourth day.

Problem 1 How can you prove that 3 x4 =6 x 2?

In order to solve this problem, stets had to create either a 3xflay or a 6% array, cut it
in half and rearrange the halves to create the other array, recording the transition from one shape
to the other in an animation. The proof of the equality of the two expressions is inherent in the
fact that, while the shapef the array has changethe representation still contaitise same
numter of units Several student responses sinewn below ALOs responsshownin Figures
4a and 4h istypical. She began with a 3x4 array, cut it into tw@ 3xrays and moved oné o
the smaller arrays under the other small array to creéx@.aHer explanation reads, Ol started
with a 3x 4 array, then | made it into ax62 array. | cutthe 8 4 array intoa X2 +a 3x 2
array, then move onex32 array under the other ofte.
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Figure4a.ALOs proof foProblem 1: Beginning  4b. Ending

Some students wanted to show #neytransformation in both directions, i.&om 3x4 to
6x2 and from 82 to Xx4. One example i©00s work shown iRigures 5a and StBefore
starting ler recording, she created a 3x4 array, a 2x6 arrayvam@x2 arrays. Her final screen
showsjust two arrangements: a 6x2 made up of two 3x2 arrays and a 3x4 made up oRtwo 3x
arrays. Her writteexplanatiol Oldid a 3x 4 then | move the cebunder the other cube now



itOs a ¥ 4. Now | made a & 2. | cut it in the middle and put to a long sti@kis a little hard
to follow, partly because of her use of some vocabulary that ked beveloped in her
classroome.g. OstickO to mean arraisit are much longehan wide Her oral explanation in
class howeverwas quite clear.

How can you prove that 3 x 4 = 6 x 2? How can you prove that 3 x 4 = 6 x 2?
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Figure5a.DO0s proof foProblem 1: Beginning 5b. Ending

While few students actually wrote down a statement that Othe quantity had not changed, just
the arrangement of the arrays,O the teacher led the class discussion in that direction and at least
one student included the following in his work, OThe arrays are different sizes but have equal
numbers.O (By Osize,O he means Oshape.O)

All but three students were successful in creating animations to prove this equivalence.
(One student with behavioral problems did not want to participate; a second student could create
animations but did not understand the math; a third student showed that 3 x 4 = Heherl, r
than 6 x 2.Several studds went on to make up their owimilar problemsgreating animations
showing, for exampldghat5 x 2 =10x lor6 x6 =12 x 3.

Problem 2 What happens when you subtract 1 from one of the factors in a multiplication
problem? Create an animation to show what happens.

While this problem was stated as a general question, we decided in consultation with the
teacher to pose it about a particular multiplication problemmely6 x 4. We planned to move
to the more genal problem statement if wead tme, but we did not.

The key insight we hoped students would have in working on this problem is that
subtracting 1 from one of the factors can be modeled by subtracting a row or a column from the
array representing the original multiplication problem. Some students inthallght that they
could model Osubtracting 1 from a factorO by subtracting 1 from the product. In fact, for better
or for worse, our software made this impossible, since usingCiltetool on an array
automatically cut off some number of rows or columrisowever, we observed at least one
student (JA) tryinfjl unsuccessfulljd to cut off a single unit from an array. Her eventual
solution to the problem is presentadrFigures6a and 6 which showthe beginning and end of
the animation she created. eStut df one column from the 6karray and moved it to the side.

Her written explanation offers a window into her struggles: Ol notice that if you take away 1 your
answer would be 1 more less and if you take away 4 your answer would be 4 more less.O



What happens when you subtract 1 from one of the factors in a What happens when you subtract 1 from one of the factors ina
multiplication problem? Create an animation to show what happens. multiplication problem? Create an animation to show what happens.
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Figure6a. JAOs proof foPrablem 2: Beginning 6Ending

While many of the students created animations similar to JAOs, cutting off and moving
either a row or a column, several students saw an additional level of complexity in the problem
and realized that they could subtract one frdrher factor, ending up wh two different array
manipulations. ME, for example, created twdl @Grrays, cut a row off one and a column off the
other and wrote, Ol started witk46 | cut one of sides ofx@ and made it in to ax&. When |
cut the other one | took the top onalanmade &3.0 Starting and ending states of his animation
areshown inFigures7a and 7b.
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Figure7a. MEOs proof foProblem 2: Beginning 7Bnding

Another studenadded a dramatic flair to his solution by cutting off a row, moving @yaw
from the original array, then deleting it. During the class, he was adamant that we display his
work on the projector, so in the last few minutes of class wi dil the disappearance of the
cutoff row was greeted with appreciative laughter from theostudents and the teacher.

All but four students were able to create animations for this proof. (One again did not want
to participate; one forgot to taRecord, but was nonetheless successful in cutting and moving
arrays to demonstrate the proof; twim not understand the math, though they could create
animations.)



4. RESULTS AND EVALUATION

Our reflectionsare organized around ouhree design goalsiovel representations, dynamic
representations, andexplanations.

* Were students able to creat®el representations?

Students were able to use the tools quite faci{alyd enthusiastically)put their solutions had

only minimal variability, due to the narrownge of tools that we providetthiem. There was
more variability in their solutions tthe second problelisubtracting 1 from a factrbut even

there, most solutions were similar. Our next stepgroviding students with more expressive
options will be to integrate more tools with the animation capability and to develop a fuller range
of tools to construct and manipulate arrays.

Adding array construction tools to the set of tools students have availablenaiey it
possible for students to express more OwrongQ @gasutting off a single unit from an array,
rather than cutting off a row or column, as JA wanted to do. There is an interesting educational
dilemma encapsulated in this design questi®ane digital tools lead students to OcorrectO ideas
but may short circuit the reonception process that may ultimately lead to deeper understanding.
In this case, if JA had been able to just take off one unit from her array to show her
understanding of Oswicting 1 from a factorQvhich she would have beable to do with
physical cubesthe classroom conversation would have been different. Would this have been
ObetterO for her learning® for the class as a whole? Having more flexible tadllsallow us
to examine this question in more depth.

* Were students able to creatgamic representations?
The animation tools worked well, and students learned to use them quickly. Whilenatyedd
have direct comparisons, our impression is that these tmwmdbled students to express
mathematical equivalencesone easily than they could witpencil and paperphysical
manipulativesor static drawing toolsAs the teacher said, OOn paper they draw the beginning
and the end. 1tOs so much easier to seedbBwhen the kids can create the animation.O

Our classroom observations led to several improvements in our Ul design, which are
described in the next sectionn particular, ve noticed thathe teacher and students would
sometimes want to forward/rewirah animation to a specific sp@nd sometimes the students
lost track of what they were doing with an animation (rewinding, editing, replaying, latc.)
addition,the teacher sometimes wanted to vary the speed at which an animation played back. For
more complex animations, the teacher would want to play them back slowly so that students
could see exactly what was taking plabat for simpler animations, she wanted to play them
backmore quickly

* Did the tools facilitate both written and oeaplanations?

We had originally hypothesized that adding the ability for students to record an audio
explanation taccompanynanimation would enhance their ability to explain their thinklng,

we did not implement such a featdoe two reasons First, we realized in the deg phase that

it would bedifficult for students to synchronize theerbal explanations with thenimation. In
general, the animatiorfer the number proofs in our curriculuare brief and last a far shorter
time than it take for a student to describghat is happening in the animatiorAs desribed
above, the issue of plegick speed was a cofigating factor and we decided thategrating
audio at this point would be more of a burden than a help to the uSssond, wehad
discovered in previous experiments with audio explanations that it was quite difficult for an
entire class to hear an explanation played atudentOs teacherOs machine. In our triaith



the animation toglthe studentsO written explanationsenserfficient to support orallasswide
discussions about theproofs.

There are studenthiowever,who find writing daunting and they maybenefit from an
audio recording capabilitySuch audio recordings may be especially helpful whigaeher will
be reviewingwork outside of class when students are not availabldetxribe oranswer
guestions about their animations.

5. CURRENT AND FUTURE WORK

The airrent version of the animation software has three eatufes, the first two of which
are shownn Figure 8

Location Slider We addd a location slideroverlaid on the animation progress b#rat allows

a user to play an animation by moving the slider back and forth, dnetiges to a specific
location. The slider allows a user to forward ammetion past uninteresting or repetitious
sections.

Variable Playback Speedhitially we attempéd to decide on an optimal average spéed
animation playbackbut itis better to create a user control, inmpéated as a slider, that allows
the teacheand students to change in real time fipeed at which an animatiepglaying. The
slider is located between tli#ear button and the animation control buttons.

Recording CueWe made the border of the animatemea flash red when usar® recording a
animdion, providingan extra cu¢o help users remember to pressRheord button.

<t -

Figure8. New features: Location slider (on yellow progress bar) and variable playback speed (below
progress bar)

In addition to modifying the animatiaiool, our current and future work involves making
our array tools more flexibJeas discussed in the previous section, e.g., to enable students to
express more OwrongO ideas such as removing a singl®mnin arrayrather than a row or
column. It also involvesrpviding students with tools to prove generalizatiaf®ut arithmetic
operationgrather than specific instantiations géneralizationsWhile Problem 2 for example,
was phrased in full generalflyONhat happens when you subtract 1 from one factor in a
multiplication problem?R students actually worked on the problem in the contexd ®f4.



While they weresuccessful in their use of the technology and cogent in their arguments about the
specific problem, there was no obvious way for them to use the teghrio make the general
argument becaugbey could only create specific arrays using our ttmkpecifythe numbes of

rows and columns. In order tarticulate general proofs,elementary students need a
representation thachieves what OxO and Oyan dormal algebraic proof$in this case, a
representation that enables students to indicate that the actual numbers of rows and columns do
not matter. Using such a representation, studéets ould state proofs about the structure of
numbers and the ef€t of manipulations on that structuréOne such representation can be
modeled after what students do when using physical manipulatives such as Unifix cubes to state
a proofabout numbers The Bostonteacheneported that wheher studentsalk about profs,

they sometimes useheir hands to cover part of thegpresentation in order to indicate that it
doesnOt matter how many cubes atbaénOcoveredO part of the numbefe are designindor

CLP a similarsoftwareOhandO that will allow studentsctwer parts of an array tdistinguish
between the critical partof the structure of a numbeée., thosepartsthat are important to the

proof, and those indeterminate parts that are Ovarialdlée(plan to observe the use of this new
feature in our nextlassroom trials.
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